Linear & Projectile Motion
$v=v_0+at$, \; $x=x_0+v_0 t+\tfrac12 a t^2$, \; $v^2=v_0^2+2a\,\Delta x$, \; $\Delta x=\tfrac{(v+v_0)}{2}t$
Projectile: $x=v_0\cos\theta\,t$, \; $y=v_0\sin\theta\,t-\tfrac12 g t^2$; \; $R=\dfrac{v_0^2\sin2\theta}{g}$; \; $H=\dfrac{v_0^2\sin^2\theta}{2g}$; \; $t_f=\dfrac{2v_0\sin\theta}{g}$
Circular & Rotational
$a_c=\dfrac{v^2}{r}=\omega^2 r$, $v=\omega r$, $T=\dfrac{2\pi}{\omega}$\; /\; $\omega=\omega_0+\alpha t$, $\theta=\theta_0+\omega_0 t+\tfrac12\alpha t^2$, $\omega^2=\omega_0^2+2\alpha\,\Delta\theta$
Torque $\tau=\vec r\times\vec F$, $\sum\tau=I\alpha$; \; $L=I\omega$, $\tfrac{d\vec L}{dt}=\sum\tau$; \; $K=\tfrac12 m v^2+\tfrac12 I\omega^2$; Parallel‑axis $I=I_\text{CM}+Md^2$
Work, Energy, Power; Momentum & Collisions
$W=\int \vec F\cdot d\vec r$, $K=\tfrac12 m v^2$, $U=mgh$ (near Earth), $W_{\text{net}}=\Delta K$, $P=\dfrac{dW}{dt}=\vec F\cdot\vec v$
$\vec p=m\vec v$, $\vec J=\int \vec F\,dt=\Delta\vec p$; perfectly inelastic $v_f=\dfrac{m_1v_1+m_2v_2}{m_1+m_2}$
Gravitation & Orbits
$F=G\dfrac{m_1m_2}{r^2}$, $U=-G\dfrac{Mm}{r}$, $v_\text{esc}=\sqrt{\dfrac{2GM}{r}}$, circular $v=\sqrt{\dfrac{GM}{r}}$, $T=2\pi\sqrt{\dfrac{r^3}{GM}}$
Vis‑viva: $v^2=GM\left(\dfrac{2}{r}-\dfrac{1}{a}\right)$; Kepler 3rd: $T^2=\dfrac{4\pi^2}{GM}a^3$ (for $M\gg m$)